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Abstract

The problem of partitioning irregular graphs and meshes for parallel computations on homogeneous systems has been exten-
sively studied. However, these partitioning schemes fail when the target system architecture exhibits heterogeneity in resource
characteristics. With the emergence of technologies such as the Grid, it is imperative to study the partitioning problem taking into
consideration the differing capabilities of such distributed heterogeneous systems. In our model, the heterogeneous system consists
of processors with varying processing power and an underlying non-uniform communication network. We present in this paper a
novel multilevel partitioning scheme for irregular graphs and meshes, that takes into account issues pertinent to Grid computing
environments. Our partitioning algorithm, called MiniMax, generates and maps partitions onto a heterogeneous system with the
objective of minimizing the maximum execution time of the parallel distributed application. For experimental performance study,
we have considered both a realistic mesh problem from NASA as well as synthetic workloads. Simulation results demonstrate
that MiniMax generates high quality partitions for various classes of applications targeted for parallel execution in a distributed
heterogeneous environment.

Keywords: Distributed heterogeneous systems, Grid computing, mesh applications, multilevel graph parti-

tioning, load balancing, performance study.

I. INTRODUCTION

Exploiting existing heterogeneous systems to solve problems faster is a cost-effective approach as opposed

to replacing these systems with yet powerful machines. The popularity of Grid computing infrastructures [5]

has stirred active research in the arena of harnessing computational capacity from distributed heterogeneous

systems. The Grid couples geo_aphically distributed heterogeneous resources to provide a metacomputing

platform promising computational power of magnitude never anticipated before at affordable cost. However,

these promises come with challenges for the research community to successfully map varied applications on

such heterogeneous collections of high performance systems.

The Information Power Grid (IPG) [14], NASA's successful venture into the Grid computing arena, aims

to provide scientific and engineering communities orders of magnitude increase in their ability to solve prob-

lems that depend on the use of large-scale dispersed resources: aggregated computing, diverse data archives,

laboratory instruments, engineering test facilities, and human collaborators. However, the scope of this work

is limited only to the parallel and distributed solution of large-scale computational problems. Mesh appli-

cations are a class of problems that require such high-end computational power since performance must be

scalable to hundreds of processors under the current technology [1], [4]. In the literature, these are termed

as distributed supercomputing applications [5]. The IPG provides an infrastructure for parallel distributed

computing across heterogeneous systems, thus satiating the computational demands of such applications. A

parallel application could be initiated at any node (a uniprocessor workstation or a tightly-coupled supercom-

puter) on the Grid. The application would then have to be partitioned among available processors on the Grid,

and the computation carried out in a parallel distributed fashion to generate results that are finally collected

at the application initiator node.
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Thesuccessfuldeploymentof compute-intensiveapplicationsin aGridenvironmentsuchastheIPGin-
volvesefficientpartitioningona truly heterogeneousdistributedmetasystemwhichmakesnoassumptions
abouttheresourcesthat comprise it. As more diverse resources are added, the Grid scales to larger capability

and hence greater heterogeneity. The interconnects could range from a very high speed optical link between

the IPG nodes to relatively slower intra-node communication (for a loosely-coupled network of worksta-

tions). There are also cases where the inter-node communication is slower than the intra-node links. Apart
from these variations, there are no constraints on the network topology connecting these resources. In other

words, we impose no uniformity on the processor architecture or the links that connect them. This leads to

a purely heterogeneous system model with varying system characteristics such as processor computational

speed, network communication speed, and network topology. In this paper, we demonstrate how diversity
in system characteristics affects the partitioning of an application in such environments. Workload hetero-

geneity is reflected by the differing (random) weights of the vertices and edges of the graph representation

of the application. Unlike previous models of mesh applications, we do not assume the graph to be sparse

or uniformly distributed in terms of weights. Thus, a partitioning scheme for such general purpose graphs
encompasses a wide variety of parallel distributed computing applications on the Grid.

Multilevel algorithms have been a universal approach to solving the graph partitioning problem for ho-

mogeneous system models. Partitioning schemes such as Metis [16], Chaco [12], and Jostle [23] employ

multilevel strategies but fail to address the limitations imposed by heterogeneity in the underlying system
model. They all assume the processing speeds of the computing resources to be uniform and the communi-

cation stratum connecting any two resources to be of equal capacity. They also assume a uniform network

topology. Furthermore, they do not delve into the mapping problem that addresses how partitions are as-

signed to processors in a system to reduce application execution time, which is the ultimate objective. Above

all, these schemes optimize the wrong metrics. Traditionally, the standard approach has been to divide the

vertices of a graph into approximately equal-weight partitions (balance computations) and minimize the num-

ber of cut edges between partitions (minimize total runtime communication). We first show that minimizing

edgecut may not necessarily reduce the parallel execution time of an application on a distributed suite of

heterogeneous resources. Previous work reported in [10], [11] have also pointed out similar flaws of standard

partitioning schemes. Our objective is to relax the above assumptions on system models, thereby overcoming

the inherent shortcomings, and propose a novel partitioner for distributed heterogeneous environments.

Little prior work has been done on partitioning applications for heterogeneous Grid computing environ-

ments. Das et al. [3] studied heterogeneity in inter-cluster communication speeds to determine the feasibility

of mesh applications in the Grid. The work did not consider heterogeneity within a cluster and diversity in

system parameters, such as processing speeds and network connectivity, that are characteristic of any Grid.

However, the authors attempted to optimize the correct metric, namely the execution time of the application,

when partitioning a mesh application for a distributed environment. The optimization was based on a throttle

value that depend on the input mesh application. As a result, this partitioning scheme will not work well for

all possible types of applications. Furthermore, their optimization scheme suffers from the danger of failing

into a local minima. Walshaw and Cross [24] modeled a heterogeneous communication network and consid-

ered the mapping problem, but the work was limited with respect to the extent of heterogeneity experienced

in Grid computing environments. In particular, they optimize on edgecuts, a flawed metric for parallel com-

putation as argued above. Schnekenburger and Huber [20] partitioned a data parallel program on a network

of workstations with varying processor weights, but did not take into account the network heterogeneity.

We propose a more general purpose heterogeneous partitioner, called MiniMa.,c, in the sense that it allows

full heterogeneity in both the system and workload characteristics, and attempts to directly minimize the

application runtime. MiniMax is tested against diverse systems and workloads to establish its feasibility for

different types of metasystem architectures and a wide variety of parallel applications. MiniMax generates

and maps high quality partitions and a near perfect balance is achieved in the execution times of individual



processorscomprisingthemetasvstem.Ourmajorcontributionsareoptimizationsbasedon theapplicacion
execution time as opposed to indirect objectives targeting edgecuts and subsequent assignment of partitions to

processors. We have also considered complete heterogeneity in the system as well as in the workload graph,

thereby modeling a variety of metasystems and applications.

The remainder of this paper is organized as follows. In Section II, we describe the workload model, fol-

lowed by a model of distributed heterogeneous metasystems in Section III. In Section IV, we formally define

the partitioning problem. Section V discusses MiniMax, the proposed multilevel heterogeneous partitioner

and its complexity analysis. In Section VI, we experimentally study the performance of MiniMax for realistic

and synthetic workloads. Finally, Section VII concludes the paper with directions for future research.

II. WORKLOAD MODEL

Many compute-intensive and complex problems are modeled using unstructured (irregular) graphs and

meshes [2], [18], [21]. These constitute a significant portion of high performance supercomputing applica-

tions that are ideal for a Grid environment. Such applications emerge from numerous scientific and engineer-

ing domains, namely computational fluid dynamics (CFD) [22], numerical methods for solving differential

equations and matrix problems [8], VLSI testing [15], and data parallel computations for geographic and

extra terrestrial information processing [17]. Finite element and finite volume methods generate unstructured

meshes which are better represented as a dual graph [19] for the purpose of efficient partitioning and load

balancing. Parallel implementations of these applications involve a graph representation of the problem and

its efficient partitioning onto a target system.

Discretely, the problem domain can be modeled as a weighted undirected graph G = (V, E), which we

refer to as the workload graph. Each vertex v has a computational weight W _, which reflects the amount of

computation at v. An edge between vertices u and v has a communication weight C _'v, which reflects the

data dependency between them. However, this model does not impose any precedence constraint between

u and v. In this paper, we have considered non-uniform random weight distribution of vertices and edges,

simulating the workload model as in [9], [13].

When mapped to a distributed heterogeneous environment, the costs associated with these weights depend

on system characteristics, such as the processing speed and the communication latency of network resources.

For example, if vertices u and v are assigned to the same processor, the communication cost will be zero. On

the other hand, if they are assigned to different processors, the communication cost will depend on the edge

weight and the communication latency between the two processors involved.

IlI. HETEROGENEOUS SYSTEM MODEL

Partitioning applications for a Grid environment involves a heterogeneous system model of the Grid. Each

Grid computational resource is referred to as a node, which could be a uniprocessor system, a symmetric

multiprocessor (SMP) cluster, a distributed memory multicomputer, a massively parallel supercomputer, or a

network of workstations. The Grid imposes no limitations on a system that could be coupled to the resource

pool. Each node thus has different resource characteristics. The communication stratum coupling these di-

verse resources is also non-homogeneous. Again, the Grid imposes no constraint on the network topology

and the communication latency between the nodes. Figure 1 shows a heterogeneous system model, with

machines of different makes and a non-homogeneous communication network. This is a scaled-down model

of the Grid, whereas actual Grid implementations like the IPG proposes an infrastructure coupling thousands

of diverse resources. Each node in Fig. 1 is shown within a solid rectangle, and comprises of one or more

processors communicating with other processors within the node via intra-node links, and with other nodes

via inter-node links. Processors and links within a node could also be heterogeneous. With respect to the par-

titioning problem, the Grid can be viewed as a pool of processors dedicated to solving a parallel application.

Each dark oval in Fig. 1 denotes a processor. We distinguish processors in the conglomerate pool by virtue



Fig.1.SystemmodelofaheterogeneousGridenvironment.

of their processingspeedandthecommunicationlatencybetweenthem.
ThisheterogeneousprocessorpoolcanberepresentedasaweightedundirectedgraphS = (P, L), which

we refer to as the system graph. It consists of a set of vertices P = {Pl,P2,... ,pn}, denoting processors,

and a set of edges L = { (Pi, Pj) I Pi,Pj E P}, representing communication links between processors. Each

processor (vertex) p has a processing weight sp, modeling its processing cost per unit of computation. Each

link (edge) has a link weight cp,q, that denotes the communication latency (cost) per unit of communication

between processors p and q. We assume full duplex communication for our experiments; however, this

constraint could easily be relaxed with minor modifications to the implementation.

When two processors are not directly connected, their link weight is the sum of the link weights on the

shortest path between them. For example, in Fig. 2, assuming all intra-node links of weight 1, and all inter-

node links of weight 5, the weight of a link between processors P0 and PT is 11, along the path Po,Pl,Ps, PT.

This approach for link weight calculation gives us a complete weighted graph for the system from which we

can derive a communication cost matrix that represents the communication cost between any two processors

in the system. This matrix is symmetric for our case, as we assume full duplex links between nodes. The

communication cost matrix in Fig. 2 corresponds to the adjacent system graph. Incorporating varying latency

based on the direction of communication between two processors will lead to an asymmetric communication
cost matrix.

Fig. 2. The communication cost matrix for a heterogeneous network.

0 5 6 6 6 6 11 11
5 0 1 1 1 1 6 6
6 1 0 1 1 1 6 6
6 1 1 0 1 1 6 6
6 1 1 1 0 1 5 6
6 1 1 1 1 0 6 5
11 6 6 6 6 6 0 11
11 6 6 6 6 6 11 0

In order to reflect full heterogeneity in the system model, vertex and edge weights in the system graph



shouldtakerandomvalues.Thenetworktopology(connectivity)shouldalsobe random. Themotivation
behindtheserequirementsis thedesireto modela trueGrid computingenvironment.Wegeneratesystem
graphshavingrandomnetworktopologywithrandomvertexandedgeweights.Wenextcomputethecommu-
nicationcostmatrixbasedon theshortestpathbetweenprocessors,asdiscussedabove.Wegenerateseveral
instancesof thesystemgraphin thisway,to evaluateourpartitioningscheme.

A. Processing Cost

Given an assignment of vertices in the workload graph to processors in the system graph, vertices incur a

processing cost. When a vertex v is assigned to a processor p, the processing cost is given by W_ = W '_ x sp,

the product of the computational weight of v and the processing weight of p. Processing cost reflects time

units required by p to process v.

B. Communication Cost

If there exists an edge between vertices u and v of the workload graph, the data communication from u to v

incurs a communication cost. When u and v are assigned to the same processor p, the data set for v is already

present in the local memory of p. Thus the communication cost is zero, assuming that local memory access

delays are incorporated within the processing weight of a processor. However, when u and v are assigned

to different processors, the communication latency between the processors comes into play. Suppose u is

assigned to processor p and v is assigned to processor q. Hence, data is transferred from the local memory of

p to the local memory of q via an interprocessor message. In this case, the communication cost is given by

C_,_ = C _''v x cp,q, the product of the communication weight of edge (_, v) and the link weight between p

and q. The communication cost reflects time units required for data transfer between the vertices u and v.

This communication model directly reflects distributed memory communication via message passing, but

the same mechanism could also be valid for shared memory machines, with the only difference being com-

munication via a global memory. In order to correctly reflect the type of communication (shared or distributed

memory), the link and processing weights must be chosen appropriately.

C. System Potential

Given a system graph, it is necessary to derive a composite metric to denote the overall potential of the

system (Grid). By system potential, we mean the computational power of the Grid taken as a whole, a

conglomerate of diverse resources solving a single distributed supercomputing application. This metric is

required to evaluate the scalability of any partitioning scheme with increases in the potential of the Grid.

Given a heterogeneous setting, it is not necessarily true that a system with more processors has a higher

system potential than one with fewer processors. System potential is a function of several factors: the num-

ber of processors, the individual processor's computational speeds, the connectivity between nodes, and the

communication cost matrix. A system with high processor speeds could have a lower system potential than

a system with relatively lower processor speeds because the communication cost matrix of the former may

be weaker than that of the latter. This means that the communication network plays an important role in

determining the system potential of a Grid.

We model system potential relative to a given workload. Given a workload graph G = (V, E), and a system

graph S = (P, L), we compute the system potential ffsus as the sum of individual processor potentials. Thus,

ffsy_ = _ qSp,
psP

where the potential ffp of a processor p is defined as

(1)

4),,= 1/(ep + &p). (2)



Here, ep is the mean time required by p to compute a vertex, averaged over all vertices of the workload; cp is

the mean time required by p for an inter-vertex communication, averaged over all edges of the workload; and
5 is the average degree of the workload graph:

e, = W llV!) x 3p (3)
vEV

c-,v : ( __, C_'V/IEt) x _'p (4)
(u,v)_E

5= 2 x IEI/IVI.

The term 5p is the mean link weight at p, averaged over all links incident on p, and is given by

(5)

Z; (6)
q6 N, q:,fip

where 5p is the degree of processor p in the system graph. Thus, Cp is the reciprocal of the average time

required by p to execute a vertex of the workload. (It is analogous to the clock rate of a processor which is

defined as the inverse of the cycle time.) Therefore, it is reasonable to compute the overall system potential

as a sum of individual processor potentials. It is important to mention that we use average values of the

parameters for both the workload graph and the system graph to calculate _Ssus. Thus, ffsu_ is an approximate
metric and applies only in the mean; however, we shall observe its merit in Section VI.

We assume, for modeling purposes, that all inter-vertex communications incur a communication cost that

is dependent on the link weights (see Section III-B). This assumption does not weaken our model as it is

consistent for all processors in the system and over all system graphs that we have generated. Succinctly,

our formulation of _Ssus is an estimate of the absolute power of a heterogeneous system relative to a given
workload; it is needed to evaluate the scalability of a partitioning scheme.

As mentioned earlier, system potential is a function of the number of processors ([P[), their processing

weights (sp), the link weights (qo,q), and network connectivity (A). We adjust network connectivity by varying

A, the ratio of the number of links in the system graph to the maximum possible number of links: A =

21LI/(IPI(IPI- 1)). It also represents the probability of a link between any two processors in the system. For

example, A = 1 represents a fully connected system graph. Smaller values of A model a system with weaker

connectivity. Figure 3 shows how I's_, varies with changes in these four parameters. For all experiments,
if,u, is calculated with respect to the dual graph of a real life mesh application.

Figure 3(a) plots _Ss__ against each of the four parameters independently. For each case, we vary one of the

parameters, keeping the others constant. For example, when varying processing weights, a set of nine graphs

are generated with A = 1, constant link weights, and a fixed number of processors. Here we allow processing

weights to vary randomly in the range 10-100 for each graph in the set. Similarly, when generating system

graphs for link weights, we randomly change the link weights and keep the other parameters constant. For

the case of processor count, we alter the number of processors from 10 to 100, and keep other parameters

constant. However, for the case of network connectivity, we vary A from 0.1 to 1. In Fig. 3(a), A is expressed

as a percentage ranging from 10 to I00. It is clear from the plots that ff,_ has a positive correlation with the

number of processors in the system, provided other parameters are held constant. For network connectivity,

we also see a gradual increase in Osus with an increase in A. However, for the other two cases, we see _5,_

decreasing with an increase in the respective weights. It is worth noting that the steepest change in ff,_
occurs with a change in the link weights whereas processing weights affect it the least. This demonstrates the

important role of communication cost associated with parallel execution in a distributed environment.

Figure 3(b) shows scenarios where an increase in the number of processors in the system does not guarantee

an increase in _5su,. Here, we generate a set of 20 system graphs with the number of processors varying from
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Fig. 3. System potential (function of diverse system characteristics) (a) versus individual parameters, and (b) versus the number of

processors while varying all other parameters.

5 to 100. We allow random values for processing and link weights, and a random degree of connectivity for

each graph. Observe that _ssus is not directly related to the number of processors, and that there are instances

when it decreases with an increase in the number of processors. These instances are highlighted within pairs

of arrows in the figure. For example, an increase in number of processors from 35 to 45 reduces ¢'sus- The

justification is that several other parameters, as discussed above, collectively determine the potential of a

system.

IV. PARTITIONING PROBLEM

Given a weighted workload graph representation of an application, the standard partitioning approach till

date has been to group the vertices of the graph into almost equally weighted sets such that the total edgecut

across partitions (sets) is minimized. Edgecut is defined as the total weight of the edges in the workload graph

whose incident vertices belong to different partitions. A number of software packages such as Metis [16],

Chaco [12], and Jostle [23] solve the partitioning problem with this objective. However, when the aim of

partitioning is parallel execution of an application on a Grid, these schemes fail to meet the ultimate objective

of minimizing the application execution time mainly due to the following three reasons:

• First, standard partitioning schemes do not delve into the mapping problem which determines the assign-

ment of partitions to processors. The drawback of a separate mapping algorithm is that assignment of vertices

to partitions cannot be changed in spite of the possibility of reducing the execution time on reassignment.

Moreover, there is an additional time complexity associated with the mapping process. Thus, we shall re-

fer to our partitioning problem as the cumulative process of determining load shares by partitioning and the

assignment of partitions to processors.

• Second, the standard approach evenly balances workloads across partitions and minimizes the total commu-

nication volume by minimizing the edgecut across partitions. Unfortunately, the edgecut metric is flawed [ 11 ],

because it does not minimize the parallel execution time of the application. The overall performance of a par-

allel application is governed by the busiest processor. Thus, in order to minimize the parallel execution time

of an application, the objective should be to minimize the maximum execution time among the processors

constituting the computing environment. So, rather than minimizing the total communication volume, the

objective should be to minimize the communication volume of the busiest processor. Figure 4 shows how the

execution time of an application can be lower even if edgecut increases. Figure 4(a) shows a 6-way partition

of an arbitrary graph among processors A to F. The edgecut representing the communication volume across
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Egdecut = 52
Exec. Time (Parallel comm.) = t + 15

Exec. Time (Sequential comm.) = t + 44

Egdecut = 80

Exec. Time (Parallel comm.) = t + 9

Exec. Time (Sequential comm.) = t + 39

Fig. 4. Total edgecuts versus application execution time.

partitions is denoted within a small box at the partition boundaries. The overall edgecut for this partition is 52.

Assume all processors have an equal distribution of the computational load denoted by computation time t,
and that link weights between processors denote time required for communication. Therefore, the execution

time of the application for this partition is t + 15, where 15 time units are required for communication by pro-

cessor F (all communication taking place in parallel). Figure 4(b) shows another partition for the same graph

on the same number of processors where the execution time is lowered to t + 9 while edgecut has risen to

79. This validates our claim that edgecut is a flawed metric when the objective of partitioning is the efficient

parallel execution of an application. We therefore attempt to directly minimize the application execution time

in MiniMax. Parallel communication may not be a valid assumption in a truly distributed heterogeneous envi-

ronment owing to the lack of I/O ports or explicit links between communicating processors. Even for the case

of sequential communication, the execution time in Fig. 4(a) is t + 44, which is higher than the t + 39 time for

the partition in Fig. 4(b). In our experiments, we have assumed sequential communication at each processor

to calculate the execution time. However, this assumption can easily be relaxed by associating a parameter

with each link denoting the possibility of parallel communication. Then, the communication cost of a pro-

cessor would be the maximum among all communications at that processor. Approaches based on sequential

communications to compute the parallel execution time have been considered in [3]. Our contribution is that

we attempt to optimize the correct metric, i.e., the execution time of the application.

• Third, existing partitioning schemes do not take into account any heterogeneity in the system graph. They

produce partitions with the assumption that all processors are of equal processing capability, the system graph

is fully or uniformly connected, and links between processors are of equal weight. With the aim of parallel

distributed processing on the Grid, our partitioning scheme eliminates all such assumptions. Edgecut in itself

is not a correct measure for the communication cost owing to the heterogeneity in the link weights; each

edgecut and the communication link to which it is assigned together determine the cost of communication.

However, previous schemes have been successful despite these shortcomings by imposing constraints on

the workload graph: a sparse graph representation, uniform distribution of vertex and/or edge weights, and

geometric locality [11]. Results of our scheme show success with more general problems where the workload

gaph is also non-uniform.

Given a workload graph G = (V, E) representation of the application, and a system graph S = (P, L)

representation of the Grid, the objective is to assign vertices of the workload graph to partitions, where a par-

tition is mapped to a vertex of the system graph, such that the execution time of the application is minimized.

Clearly, the problem is extensible to the classical graph partitioning and task assignment problem [6], and

is thus NP-complete. The generalization of this problem by considering heterogeneous workload (task) and

system graphs makes the problem more complex. Given a partitioning of G over S, the execution time of the

application is the maximum over the execution time of individual processors:



ET = max{EZp} p P
p

where ETp is the execution time of processor p and is given by

(7)

E ;:E vv×s,+E E c 'v×c,,q• (s)
v.Ap v.Ap u.Aq, p#q

Here, v,Ap denotes an assignment of vertex v to processor p. Note that ETp is the sum of the processing and

communication costs as discussed in Sections III-A and III-B, respectively. The first term in Eq. 8 denotes

the processing cost associated with all v assigned to p, and the second term denotes the communication cost

associated with all neighbors of v not assigned to p.

V. MINIMAX: A MULTILEVEL HETEROGENEOUS PARTITIONER

MiniMax is a graph/mesh partitioning scheme developed for distributed heterogeneous systems such as the

Grid. It differs from existing partitioning schemes in that it takes into consideration heterogeneity in both the

system and workload graphs, and produces high quality partitions for all types of parallel Grid applications.

We employ a multilevel strategy where the given graph is first coarsened through several levels to a smaller

number of vertices. Next, the coarsest graph is partitioned among processors with the objective of minimizing

the application execution time. However, the best partition for a coarsened graph may not be optimal for the

original graph. Hence, while the coarse _aph is refined back to the original, an optimization scheme is used at

each level to reduce application execution time. At each refinement level, we consider the possible migration

of vertices to other processors which could minimize the maximum execution time among all processors. In

the following, we describe each step of our scheme in more detail.

A. Graph Coarsening

Given a graph Gi = (Vi, El) at level i, we generate a coarsened graph Gi+l = (Vi+I, Ei+l) for level i+ 1 by

finding a maximal matching of Gi and collapsing edges in this matching. Maximal matching of a graph is the

set of edges Em C Ei such that no two edges in Em are incident on a common vertex, and that any edge not

in the maximal matching has at least one of its endpoints matched [16]. Vertices ul and us at the endpoints of

matched edges in Em are merged to form a new vertex v E Vi+l with weight W _' = W '_1 + W "_. Vertices in

V/that are not endpoints of the matching are copied over to V/+_. If merged vertices are adjacent to a common

vertex, a new edge replaces the merged edges with weight equal to the sum of the edge weights it replaces.

A number of procedures to determine the maximal matching has been discussed in [16], e.g., random edge,

heavy edge, light edge, and heavy clique. After exploring these procedures for developing a good matching

scheme for MiniMax, we found that a variant of the heavy clique matching worked the best. We call this

low degree matching. We generate a random list of vertices in Gi and visit each vertex on this list, matching

an unmatched vertex with an unmatched neighbor. To arbitrate between several unmatched neighbors, we

choose the neighbor with the minimum degree. When a vertex is matched, it is marked to eliminate it from

further consideration during subsequent matchings for other vertices. This coarsening procedure requires

time proportional to the number of edges in the finer graph, O(IEil). The motivation behind low degree

matching is that the coarsest graph will have a high degree of connectivity and hence give more options for

our initial partitioning to obtain a low execution time. Also, since we use a graph growing algorithm for

the initial partition, a higher degree of connectivity ensures more directions for growth. In addition, our

refinement]optimization step at each level also benefits from a graph with a large number of edges.

B. Initial Partition

The graph coarsening process is terminated when the number of vertices in the coarsest graph falls below

a given threshold. An initial partition of the coarsest graph is then made among the processors of the system
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graph with the objective of minimizing the application execution time. VvSth iPi vertices in the system graph.

we employ a rPi-way graph growing algorithm to assign each vertex in 1." to one of the vertices in P. To

begin, each processor p is assigned a vertex from V and a region is grown around it for all processors with

the objective of minimizing the maximum execution time. Each region continues to grow until all vertices

in V have been assigned to one of the processors in P. The choice of initial vertices to start the growing

procedure affects the quality of the partitioning. We choose a list L of IP] vertices from V with the highest

degrees as the one to begin the growing procedure. The motivation behind this approach is that higher the

degree, the greater will be the directions for partition growth at a processor. This approach for choosing initial

vertices produces fairly good partitions. A vertex from L is assigned to a processor in accordance with the

processor's processing weight. We employ a linear time bucket sort to order processors with non-increasing

processing weight. Similarly, we order vertices in L with non-decreasing computational weight, and assign

the i-th element of L to the i-th processor. Once each processor has a vertex assigned to it, it has an associated

execution time (see Eq. 8). A region could be grown around each assigned vertex in a breadth first fashion as

in [7]. However, we employ a greedy approach whereby the region corresponding to a processor is allowed

to grow only along a neighboring vertex w that leads to a minimum increase in the execution time of the

processor. The gain in the execution time of processor p on assignment of an unassigned vertex v is given by

Cain_ = W '_ x Sp + _ C _''' x cp,q. (9)
u.Aq, VqEP, q¢p

Thus, the increased execution time on assignment of v to p is ET_ = ETp' + GainS, where ETp' is the

execution time prior to the assignment. Each region has a candidate vertex w among all its neighbors, the

gowth along which will lead to the minimum increase in execution time at the processor. Hence, w =

{v t minv{ET_}, v E N(/_)}, where N(Rp)represents the set of vertices that are neighbors to the region

corresponding to processor p. Over all w's associated with each region, only one region is allowed to grow in

each iteration. A region is selected for growth if its candidate vertex w on inclusion into the region results in

the lowest execution time over all processors. In total, IVc I-]PI iterations of individual growing are required,

where tVcl is the number of vertices in the coarsest graph. To speed up the graph growing procedure, we use

a min-heap to store vertices on the frontier of each region, defined to be the set of vertices on the boundary.

Each element of the heap has three fields, namely the vertex on the frontier, the region to which it could

be assigned, and the corresponding execution time of the application if the vertex is assigned to that region.

The rain-heap is keyed on the application execution time. Thus, the vertex with the minimum application

execution time is inserted first into its corresponding region. When a vertex is inserted, the adjacent vertices

already in the heap are updated to reflect the new application execution time and those vertices not in the

heap are inserted. A table of pointers to heap elements is also maintained to allow constant time access. The

motivation behind this graph growing strategy is that it attempts to minimize the application execution time

as well as the variance of individual processor execution times. The graph growing algorithm only requires

O(lVcl) time since it is performed on the coarsest graph.

C. Refinement

The coarsened graph is projected back to the original through several levels of refinement. At each re-

finement level, the partition for a coarsened graph is mapped to a partition for the finer graph, by assigning

vertices u and v that were merged to produce vertex w to the processor to which w was assigned at the

coarser level. However, a good initial partition does not guarantee a high quality partition for the original

gaph. Hence, at each refinement level, the application execution time is optimized by checking for fruit-

ful vertex migrations across partitions. Finer granularity and a high degree of connectivity (which was our

objective in the coarsening step) gives greater scope for optimization. Given a partition, with processor m

having the maximum execution time MaxET, we attempt to reduce it using three types of vertex migration



asdiscussedbelow.It is importantto notethatnoothervertexmigrationsapartfrom thosediscussedbelow
canreducetheexecutiontime of _. A vertexmigrationthat reducestheexecutiontimeof m shouldnot
simultaneouslyincreasetheexecutiontimeof otherprocessorsin thesystembeyondMazET.

• Migrate vertex from m: In this migration class, we consider only the border vertices in the partition for m

because empirical results show that almost all fruitful vertex migrations are along a partition border. Each bor-

der vertex of m is checked for mi_ation to every other processor in the system. We compute TentMazET_,,
the tentative maximum execution time that would result if a border vertex v is migrated to processor p. If

TentMaxET < MaxET, the migration is fruitful. Note that several border vertices could be candidates for

a fruitful migration. We choose the vertex with the lowest value of TentMaxET as the successful candidate

for migration.

• Migrate vertex to m." Owing to the diversity in weights of the edges in both the system and workload

graphs, migration of a vertex to the processor with MaxET could also reduce the execution time. This

situation arises when the processing cost associated with a vertex being migrated is very low compared to

its communication cost. However, in this class, migration of only the neighbors of the border vertices of m

that are assigned to other processors can lead to a reduction in MaxET. We compute TentMaxET for each

possible vertex migration in this fashion and choose the one causing the largest decrease in execution time.

• Migrate vertex from p to q (p ¢- q _ rn): This class deals with vertex migration among processors other

than m. It is possible to reduce MaxET by migrating vertices among processors not involving m because

of the heterogeneity in link and processing weights of a system _aph. However, the vertex being migrated

from p to q must have an edge into m for the migration be to fruitful. Hence we consider only a subset of P

for possible choices ofp and q. As in the other two cases above, we compute TentMaxET for each possible

migration and select the one with the lowest value.

At each refinement level, the above-mentioned migrations are carried out iteratively. During each iteration,

each of the three classes produce their best candidate vertices for fruitful migration. Among the three, the

one for which TentMaxET is minimum is ultimately committed for migration. On commitment, we update

the processor assignment for vertices, and the values for MaxET and m. Our iterative refinement scheme

continues in this fashion until none of the three classes produces a candidate vertex.

Unfortunately, this could denote a situation where the partitioning process has reached a local minima and

a sub-optimal solution could be obtained by stopping the refinement step. We therefore have a mechanism for

climbing out of local minima. Basically, when a minima is achieved, a non-fruitful vertex is still allowed to

make a false migration with the expectation that future fruitful migrations will compensate positively for the

incurred rise in execution time. We record a sequence of false migrations and if we encounter a cumulative

overall decrease in execution time, we commit these migrations. Experimental results with our test cases have

shown that a sequence of 10 false migrations helps MiniMax avoid local minima in most cases and produces

good results. With false migrations, the vertex-processor combination is recorded so that the same vertex

cannot be re-migrated to the same processor in two consecutive migrations. This avoids toggling vertices

between processors during the false sequence of migrations.

VI. EXPERIMENTAL STUDY

Experiments to evaluate our MiniMax partitioner were performed on a wide range of workloads ranging

from realistic size computational meshes used for aerodynamics simulations at NASA to synthetic workloads.

The NASA test case is a dual graph representation of a finite element mesh whereas the synthetic workload

graphs are more general in the sense that vertex and edge weights as well as the degree of connectivity can

be chosen arbitrarily. Partitioning quality is measured using the following three metrics.

• Execution Time of the application (ET): This is a direct measure of any partitioning or assignment solution

and reflects the total time taken for the application to complete. Given a partition, the execution time of

individual processors is calculated according to Eq. 8, and the maximum value gives the execution time (ET)



of theapplication.Ourobjectiveis tominimizethismetric.
• Standard Deviation (_r): An alternative way to evaluate a partitioning scheme is to determine the deviation

of each processor's execution time from the average execution time among all processors. This reflects the

variance among each processor's load assignment:

/__

= t/)-_ (ETp - ETa_)2/IPI
Vp_P

where the average execution time ETa_ is given by

(10)

ET_v = _ ET/IPI. (11)
pEP

A low value for a is desired.

• Imbalance Factor (Imb): Load imbalance is defined as the ratio of the maximum execution time to the

average execution time among processors. It is defined as

Imb = MaxET / ETa_,. (12)

Clearly, the best possible value for Imb is unity.

A. Performance Results

Table I shows results when MiniMax was run for the sparse dual graph of a mesh application from NASA.

Vertex and edge weights for this graph range uniformly between 1 and 4; the degree of vertices also lie in

the range 1-4. Here, edges are highly localized to a vertex. However, we have scaled the vertex and edge

weights by constant values 2500 and 10, respectively, giving a larger computation-to-communication ratio.

The uniformity of the weights and the sparseness of the graph still exists. Furthermore, we have generated

five sets of system graphs with ten graphs in each set, varying number of processors IP[ from 10 to 100.

Each set of graphs represents a different level of heterogeneity in the system. In the table, Homo represents

a homogeneous Grid with equal processing weights and link weights, and a fully connected topology. In

PHetero, we vary the processing weights randomly in the range 10-100, reflecting processor heterogeneity.

In LHetero, only the link weights are varied randomly in the range 1-10. In CHetero, we allow a random

connectivity between vertices while keeping other parameters constant. Finally, in FulIHetero, we randomly

vary all four parameters of the system graph.

Tables II and III show results for synthetic workloads. During the generation of these workload graphs,

we considered the computation-to-communication ratio at a vertex. Generally, the computational require-

ments of an application targeted for parallel distributed execution on the Grid are significantly larger than the

communication requirements, otherwise the benefits of Grid computing would be limited. Also, in order to

incorporate heterogeneity in the workload graph, the vertex and edge weights vary randomly. Therefore, we

have kept the computation-to-communication ratio diverse, ranging from 1000:1 to 2:1. We have chosen the

range of random values for vertex and edge weights, and the degree of connectivity of the workload graph in

such a way that this ratio falls within the desired range. Table II shows results for a workload graph where

vertex and edge weights are random, but with a uniform distribution. Table III shows results when weights

are non-uniformly distributed. We have run our partitioner for a number of non-uniform distributions, but the

results in Table III are for exponential random distribution. Good partitioning results in all cases proves the

usefulness of our partitioner for a wide variety of application types.

All tables record application execution time (ET) and standard deviation (o'), when MiniMax is run for

each of the five set of system graphs. The imbalance factor (Imb) is not shown as it is consistently equal

to unity for all runs of MiniMax, imbalance being recorded up to two decimal places of precision. We also



TABLE I

RESULTS FOR NASA TEST NIESH (50000 VERTICES AND 191600 EDGES)

System I Metric [ 10 t20 [30 [40 I 50 t 60 [ 70 [ 80 [ 90 [ lO0 [

Homo _,,,s I 177.83 [ 352.80 [ 525.29 [ 695.29 I 862.87 [ 1028.08 [ 1191.01 [ 1351.71 [ 1510.23 ] 1666.65 [
E_" 279.34 139.70 93.13 69.86 55.88 46.58 39.93 34.95 31.05 27.95

cr 7719 9222 2708 9271 8635 11155 11035 7322 1491 6856

PHeterc, tbsus 46.06 103.94 110.15 154.48 245.51 293.16 348.40 387.50 396.54 413.95 I

E_r 714.21 477.91 450.95 320.50 199.63 167.54 139.94 126.35 122.79 117.87

I a ] 54235 I 58645 I 68891 I 39588 I 51322 t 47854 I 50852 [ 56372 I 6001.0 l 55734 I

LHetero _sl, s 171.33 331.04 481.82 617.80 748.29 872.98 985.88 1093.80 1197.83 1298.46
ET 297.77 139.90 93.27 69.98 55.98 46.66 40.00 35.01 31.12 28.01

o" 5894 7370 7362 7591 7241 7691 7125 6837 7284 7854

CHetero rl,_s 177.20 34975 519.84 685.35 847.14 1006.29 1163.37 1315.50 1464.71 1614.95
ET 279.36 139.72 93.15 69.87 55.90 46.59 39.93 34.95 31.06 27.95

a 7094 7239 5668 8113 7900 10241 10283 6924 2235 6494

FuUHetero Csv* 70.97 79.22 133.50 206.17 222.18 227.13 303.91 345.81 373.78 ] 400.34 I

E_- 687.77 613.81 361.85 230.00 208.66 205.61 t50. t2 131.06 119.46 110.50

a 55084 50030 45976 55155 56603 58015 55618 57645 54783 49256

TABLE II

RESULTS FOR UNIFORM SYNTHETIC WORKLOAD (5000 VERTICES AND 199892 EDGES)

System I Metric I 10 20 I 30 t 40 I 50 I 60 ] 70 f 80 I 90 I 100 I

Homo _., _,s 113.20 i 223.64 331.46 436.78 539.72 640.37 738.85 835.24 929.63 1022.10

43.73 i 21.87 14.58 10.94 8.75 7.29 6.26 5.47 4.87 4.38

4513 i 5001 4729 4267 5219 5328 7039 5460 6224 4960

PHetero _s_,,* 29.41 66.23 70.19 98.24 155.12 185.46 219.45 244.67 249.58 260.83 I

E_" 169.16 74.74 70.51 50.12 31.23 26.21 21.89 19.77 19.22 18.45 I

cr 11409 23514 28440 32285 27334 26283 27939 28494 40186 40131

LHetero _.,_s 106.69 202.20 289.84 364.75 435.65 502.51 560.19 614.85 667.13 717.24

El" 44.19 22.08 14.72 11.05 8.84 7.37 6.32 5.53 4.91 4.42

o" 5784 3938 4403 3106 3774 4322 4260 3948 4312 4023

CHetero _s,s I 112.65 I 220.51 I 325.95 I 426.88 I 524.26 J 619.24 ] 712.36 ] 800.98 I 887.02 I 974.20 [
E_" 43.76 21.90 14.60 10.95 8.76 7.30 6.26 5.48 4.87 4.38

o" 4402 4136 3559 4754 4107 5008 3530 4098 4856 5191

d95v., 44.70 49.81 83.58 127.88 136.27 139.94 184.65 209.67 224.72 [ 240.13 I

E_ 108.19 96.23 56.77 36.08 32.73 32.23 23.54 20.55 18.73 17.33

o" 9668 28107 31516 19443 28829 24952 22852 25752 24547 27786

FullHetero

TABLE Ill

RESULTS FOR NON-UNIFORM SYNTHETIC WORKLOAD (5000 VERTICES AND 199892 EDGES)

t System [Metric I 10 I 20 I 30 t 40 [ 50 I 60 t 70 I 80 I 90 I I00 I

I Homo cbsus 360.53 723.44 1059.08 1397.75 1729.72 2055.24 2374.58 2687.95 2995.57 3297.66
E_ 13 75 6 88 4 59 3.44 2.75 2.30 1.97 1.73 1.53 1.38

o" 5030 4420 4699 4718 3858 4742 4981 4950 ] 4651 4855

PHetero ¢bjus 93 58 210 89 223 50 313 05 495 41 592.05 710.60 781.58 798.41 833.80
E_" 53.21 23 51 22.19 15.77 9.83 8.25 6.89 6.22 6.05 5.81

cr 30340 24754 27052 23347 26995 22553 21329 27541 24756 29909

LHetero _s,.,s I 342.46 I 653.27 I 941.13 I 1191.64 i 1429.68 1654.99 1852.51 2040.08 2219.82 2392.58

E_ t3 87 6 g3 4 62 3.47 2.78 2.31 1.98 1.74 1.55 1.39 J

tr 4588 3811 2473 3580 3180 2768 4204 I 344 3776 3047 ]

CHetero _sua I 359.01 I 704.78 [ 1043.74 1370.05 1686.28 1995.59 2291.51 2590.44 2873.86 3160.40
E_" 13.76 6.:39 4.59 3.44 2.76 2.30 1.97 1.72 1.53 1.38

o" 3754 3779 3572 3187 4269 3670 3823 3590 3384 3710

_,,-s I 14293 I 15936 I 26778 I 410.96 I 439.56 I 450.84 I 597.51 t 678.88 I 729.70 J 780.23 I

FullHetero E_ f33.99 30.27 17.85 11.35 10.29 10.14 7.41 6.46 5.89 5.45

tr I 9123 29308 17231 24606 20934 22376 20981 20910 18034 22528
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record the system potential (_sys) corresponding to each system graph. The choice of vertex and edge weights

for system and workload graphs determines the execution time of individual processors. Therefore, the results

generated by our experiments are dependent on the range of random values assigned to the vertex and edge

weights as discussed above. We need to assume a unit of time that is consistent throughout our experiments.

The results from our experiments yield very large values and thus, without the loss of generality, we have

assumed the smallest unit of time to be microseconds. The execution times are reported in seconds, whereas

the standard deviation is shown in microseconds. The imbalance factor is a dimensionless quantity, while

system potential is expressed as the inverse of time in seconds. It is apparent from the results that MiniMax

produces very high quality partitions. We observe that a is orders of magnitude lower than ET for all the

experiments we have performed. These imply that all processors have approximately the same ET and hence

a near perfect fmb is obtained.

We also observe that ET is a function of _s_s, as described in Section HI-C, and not strictly dependent on

the number of processors in the system. The reduction in ET more closely follows an increase in _Ssy_ rather

than an increase in the number of processors. This is clear from the ET entries in the tables for systems

having full heterogeneity. Figure 5(a) shows the percentage change in ET against percentage changes in

cI'sys for three different workload graphs and a fully heterogeneous system graph. Notice that there is a linear

relationship between changes in ET and changes in ¢Ssus. For all three cases shown, the percentage change

in ET is nearly equal to the percentage change in _5s_s. The dotted line represents the ideal situation where

the two changes are equal. These plots have been generated from data in Tables I-III. The changes in ET

and q)s_s are calculated with respect to the first entry of each of the two parameters.

Figure 5(b) shows percentage changes in ET against percentage changes in the number of processors for

the NASA test mesh for each type of system graph. Here, we observe that there is no direct correlation

between the two changes. For the case of fully-heterogeneous and processor-heterogeneous systems, this
observation is obvious. The same claim can be made for link-heterogeneous and connectivity-heterogeneous

systems, but with a lesser emphasis for our test cases. The reason is that our workload graphs are compute-

intensive owing to our choice of keeping the computational weights much higher than the communication

weights. This causes the change in _sus to be directly proportional to the change in number of processors

if processing weights are kept constant. As _s_s is measured with respect to a workload graph (see Section

III-C), the low values of communication weights in our test cases have their effect subdued by much larger

computational weights. When communication weights were given larger values, similar lack of correlation

has been observed. These experimental results validate our claim in Section III-C that _sys is a more powerful

metric along which a partitioner for heterogeneous systems can be measured for scalability.

Our experimental results are dependent on the random weights assigned to the workload and system _aphs.

However, we can draw insightful conclusions from these results. For a compute intensive workload, F_,T is

largely dependent on processor heterogeneity and to a lesser extent on link heterogeneity. For example,

in Table III, when 20 processors are used, the execution times for each of the five types of system graphs

(Homo, PHetero, LHetero, CHetero, and FullHetero) are 6.88, 23.51, 6.93, 6.89, and 30.27 respectively.

Thus, each additional de_ee of heterogeneity causes an increase in ET over that of Homo by factors of 3.42,

1.01, 1.00, and 4.40, respectively. Processor heterogeneity and full heterogeneity cause the largest change in

ET. The same pattern holds for both the other tables and for other processor counts. If the workload graph

is communication intensive, link and connectivity heterogeneity would show greater changes in execution
times.

We can also compare the improvement in ET against changes in cI'su_. For our test applications, there is

a dramatic improvement in ET for an initial increase in _sus as seen in Figure 6. Figure 6(a) plots absolute

change in ET for a corresponding change in cI,_us for the NASA test application for each of the four types

of system graphs. Gradually, a state of saturation is reached where further increases in _sus causes little

improvement in ET. This indicates that for a given application, there would be very little gain by employing
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more processors once a saturation point is achieved. The steep initial increase for all types of system graphs

confirms that our partitioner attains this saturation point very quickly. Figure 6(b) shows changes in ET

against changes in _us for three different workload graphs when the system graph is fully heterogeneous.

Similar observations can be made here. Again, the data for these figures were obtained from Tables I-III.

VII. CONCLUSION

In this paper, we have presented a novel graph partitioner, called MiniMax, for partitioning heterogeneous

workload graphs onto heterogeneous system graphs. The major contributions are optimizations based on

the application execution time, which is a direct measure of the quality of the partitioning and processor

assignment, as opposed to indirect objectives used by traditional graph partitioners based on edgecuts and

subsequent assignment of partitions to processors. We have considered complete heterogeneity in the sys-

tem by allowing randomly varying weights for processors and links, and assumed non-uniform connectivity

between processors. To encompas_ a variety of applications that could be modeled as a _aph for parallel

distributed computing on a Grid of resources, we have also allowed heterogeneity in the workload graph. A

composite metric, called system potential, that reflects the overall power of a Grid is developed to measure the
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scalability of our partitioning scheme. Direct comparisons of MiniMax with previous partitioning schemes

is not justified as our work is innovative with respect to the generality of the problem it covers. However,

future work would consist of pruning down the capability of MiniMax to the limited domain of problems that
standard partitioning schemes cover and do a comparative study.
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